Online Lernen | Mathematik Aufgaben | Wahrscheinlichkeitsrechnung und Statistik Statistik So berechnest du das arithmetische Mittel

So berechnest du das arithmetische Mittel

Das arithmetische Mittel ist eine Größe der Statistik. Du kannst es berechnen, um erfasste Daten auszuwerten. Anstatt arithmetisches Mittel sagt man auch häufig Durchschnittswert oder Mittelwert.

Arithmetisches Mittel berechnen

Ein arithmetisches Mittel gibt den Durchschnitt von etwas an. Um es zu berechnen, addierst du alle Zahlen und teilst diese Summe durch die Anzahl der Zahlen.

Merke

Merke

Hier klicken zum Ausklappen

Arithmetisches Mittel berechnen

$\Large{X_{Mittel} = \frac{x_{1}~+~x_{2}~+~x_{3}~+~x_{4}~+~...x_{n}}{N}}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

Christina möchte wissen, wie groß ihre Freunde im Durchschnitt sind. Dazu fragt sie alle nach ihrer Körpergröße und trägt diese dann in eine Tabelle ein.

Körpergrößen von Christinas Freundinnen
Körpergrößen von Christinas Freunden

Um nun das arithmetische Mittel dieser Daten zu berechnen, müssen wir zunächst alle Zahlen addieren. In diesem Fall bedeutet das, dass wir alle Körpergrößen zusammenrechnen. Die entsprechenden Zahlen können wir einfach aus der Tabelle ablesen.

$162~+~156~+~172~+~177~+~151~=~818$

Haben wir alle Zahlen zusammengerechnet, müssen wir noch durch die Anzahl der Zahlen teilen. Wir teilen nun also noch durch die Anzahl der Personen, die eine Körpergröße angegeben haben und erhalten das arithmetische Mittel. Die Anzahl der Personen lässt sich ebenfalls aus der Tabelle ablesen - es sind fünf.

$\Large{\frac{162~+~156~+~172~+~177~+~151}{5}~=~163,6}$

Christinas Freunde sind im Durchschnitt $163,6~cm$ groß.

Bedeutung des arithmetischen Mittels

Um die Bedeutung des arithmetischen Mittels für deine Daten einzuschätzen, solltest du folgende zwei Punkte beachten. Für ein besseres Verständnis wenden wir die einzelnen Punkte wieder auf unser Körpergrößen-Beispiel an.

  • Die Summe aller Abweichungen, die die Einzeldaten vom arithmetischen Mittel haben, ist $0$.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$(162-\textcolor{red}{163,6})+(156-\textcolor{red}{163,6})+(172-\textcolor{red}{163,6})+(177-\textcolor{red}{163,6})+(151-\textcolor{red}{163,6})$

$= (-1,6)+(-7,6)+8,4+13,4+(-12,6)$

$= 0$

  • Die Summe aller Einzeldaten ist genauso groß, wie $N$ mal das arithmetische Mittel.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$162~+~156~+~172~+~177~+~151~=~818$

$N$ (=Anzahl der Befragten) ist $5$.

$5 \cdot \textcolor{red}{163,6} = 818$

Rechnen mit dem arithmetischen Mittel

Beim Rechnen mit dem arithmetischen Mittel unterscheiden wir zwei unterschiedliche Aufgabentypen:

  • Die Daten sollen verändert werden, ohne dass sich das arithmetische Mittel ändert.
  • Die Daten sollen so verändert werden, dass das arithmetische Mittel einen gewünschten Wert annimmt.

Schauen wir uns nun beide Fälle an.

Ergänzen von Daten ohne Änderung des arithmetischen Mittels

Folgende Daten sind gegeben: $3, 5, 10, 14$

Unsere Aufgabe lautet einen fünften Wert zu ergänzen, ohne dass sich das arithmetische Mittel ändert.

Berechnen wir also zunächst das arithmetische Mittel, dass die Daten aus der Aufgabestellung ergeben:

$X_{Mittel}= \frac{3+5+10+14}{4} = 8$

Wir sollen die Datenreihe nun um einen fünften Wert erweitern, wobei das arithmetische Mittel den Wert $8$ behalten soll. 

$X_{Mittel}= \frac{3+5+10+14 + x_{5}}{5} = 8$

Die Addition der Einzelwerte muss durch $5$ geteilt $8$ ergeben. Die Summe muss also $40$ sein.

$3+5+10+14 + x_{5} = 40$

$x_{5} = 8$

Der fünfte Wert unserer Datenreihe muss also $8$ sein, damit das arithmetische Mittel weiterhin bei $8$ liegt:

$X_{Mittel}= \frac{3+5+10+14 +8}{5} = 8$

Ergänzen von Daten zum Erreichen eines gewünschten arithmetischen Mittels

Folgende Daten sind gegeben: $2, 5, 12, 20$

Unsere Aufgabe ist es einen fünften Wert zu ergänzen, sodass das arithmetische Mittel den Wert $9$ hat. 

Berechnen wir zunächst das arithmetische Mittel der vier gegebenen Daten:

$X_{Mittel}= \frac{2+5+12+20}{4} = 9,75$

$X_{Mittel}= \frac{2+5+12+20 + x_{5}}{5} = 9$

Damit das arithmetische Mittel bei fünf Daten den Wert $9$ annimmt, muss die Summe der Einzeldaten $45$ sein.

$2+5+12+20 + x_{5} = 45$

$x_{5} = 6$

Der fünfte Wert der Datenreihe muss eine $6$  sein, damit das arithmetische Mittel $9$ ist:

$X_{Mittel}= \frac{2+5+12+20+6}{5} = 9$

Mit den Übungsaufgaben kannst du überprüfen, ob du alles richtig verstanden hast. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Schulungs zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
www.steroid-pharm.com

https://budmagazin.com.ua

gay torrent