Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Bruchrechnung Bruchrechnung: verschiedene Brucharten

Bruchrechnung: verschiedene Brucharten

In der Mathematik unterscheidet man verschiedene Arten von Brüchen. In diesem Lerntext geben wir dir einen Überblick über die verschiedenen Brucharten und ihre Eigenschaften.

Echte Brüche

Die meisten Brüche, auf die du treffen wirst, sind echte Brüche. Ein Bruch gilt als echt, wenn der Zähler kleiner ist als der Nenner. Ist dies der Fall, ergibt der Bruch nur Zahlen zwischen $0$ und $1$. 

Merke

Merke

Hier klicken zum Ausklappen

Bei echten Brüchen hat der Zähler einen kleineren Wert als der Nenner.

$\frac{Z}{N} \rightarrow Z<N$

Besitzt der Zähler den Wert $1$, bezeichnet man den Bruch auch als Stammbruch.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\frac{1}{2}$

$\frac{5}{9}$

$\frac{7}{15}$

Unechte Brüche

Im Gegensatz zu den echten Brüchen, gilt ein Bruch als unecht, wenn der Zähler größer ist als der Nenner oder gleich. Man könnte auch sagen, dass alle Brüche, die die Bedingungen eines echten Bruchs nicht erfüllen, unechte Brüche sind. Unechte Brüche stehen für Zahlen, die größer als $1$ sind.

Merke

Merke

Hier klicken zum Ausklappen

Bei unechten Brüchen hat der Zähler den gleichen oder einen größeren Wert als der Nenner.

$\frac{Z}{N}~,~ Z~\ge~N$

Unechte Brüche, bei denen der Zähler ein Vielfaches des Nenners ist, nennt man auch Scheinbrüche, da sie sich durch Kürzen in ganze Zahlen umwandeln lassen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\frac{5}{4}$

$\frac{12}{6}$

$\frac{3}{2}$

Gemischte Brüche

Gemischte Brüche sind eine Kombination ausganzer Zahl und Bruch. Gemischte Brüche sind eine alternative Schreibweise für unechte Brüche.

$\frac{7}{3} = \frac{6}{3} + \frac{1}{3} = 2 \frac{1}{3}$

Oft wird diese Schreibweise missverstanden und als Multiplikation gedeutet, obwohl es eigentlich eine Addition ist:

$2 \frac{1}{3} = 2  \cdot \frac{1}{3}~~~~~~~~~~\textcolor{red}{FALSCH}$

$2 \frac{1}{3} = 2  + \frac{1}{3}~~~~~~~\textcolor{green}{RICHTIG}$

Merke

Merke

Hier klicken zum Ausklappen

Gemischte Brüche bestehen aus einer ganzen Zahl und einem Bruch. Alle unechten Brüche lassen sich in gemischte Brüche umwandeln.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\frac{7}{2} = 3 \frac{1}{2}$

$\frac{17}{3} = 5 \frac{2}{3}$

$\frac{27}{5} = 5 \frac{2}{5}$

Mehrfachbrüche

Brüche, bei denen der Zähler und/oder der Nenner selber auch ein Bruch sind, nennt man Mehrfachbrüche. Um Mehrfachbrüche zu vereinfachen, benötigst du die Rechenregeln zur Division von Brüchen.

Betrachten wir zunächst den Fall, dass nur der Zähler ein Bruch ist. Einen Bruch, bei dem Zähler oder Nenner eine Bruchzahl ist, nennt man auch Doppelbruch.

$\large{\frac{\frac{2}{3}}{4} = \frac{2}{3} : 4 = \frac{2}{3} : \frac{4}{1} = \frac{2}{3} \cdot \frac{1}{4} = \frac{2 \cdot 1}{3 \cdot 4} = \frac{2}{12} = \frac{1}{6}}$

Schauen wir uns nun ein Beispiel für einen Bruch mit jeweils einem weiteren Bruch in Zähler und Nenner an. 

$\large{\frac{\frac{2}{3}}{\frac{4}{5}} = \frac{2}{3} : \frac{4}{5} = \frac{2}{3} \cdot \frac{5}{4} = \frac{2 \cdot 5}{3 \cdot 4} = \frac{10}{12} = \frac{5}{6}}$

Merke

Merke

Hier klicken zum Ausklappen

Doppel- bzw. Mehrfachbrüche können mithilfe der Rechenregeln zur Division von Brüchen vereinfacht werden:

$\large{\frac{\frac{a}{b}}{c} = \frac{a \cdot 1}{b \cdot c}}$ 

$\large{\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}}$ 

Dezimalbrüche

Eine letzte Gruppe von Brüchen, die du kennen solltest, sind die sogenannten Dezimalbrüche. Dezimalbrüche zeichnen sich dadurch aus, dass der Nenner eine Potenz von $10$ mit einem natürlichen Exponenten ist. Einfacher gesagt, besitzen Dezimalbrüche einen Nenner mit folgenden Werten: $10, 100, 1000$ usw. 

Merke

Merke

Hier klicken zum Ausklappen

Dezimalbrüche besitzen eine natürlichzahlige Zehnerpotenz im Nenner ($10, 100, 1000...$) und lassen sich als Dezimalzahlen schreiben.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\frac{35}{100} = 0,35$

$\frac{12}{1000} = 0,012$

$\frac{7}{10} = 0,7$

 

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
best-cooler.reviews

source best-cooler.reviews

best-cooler.reviews/category/yeti/