Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Wurzelrechnung Wie funktioniert das Heron-Verfahren?

Wie funktioniert das Heron-Verfahren?

Mit dem Heronverfahren kannst du die Quadratwurzel einer Zahl näherungsweise bestimmen ohne einen Taschenrechner zu benutzen. Dies bezieht sich natürlich nur auf Quadratwurzeln, die keine ganze Zahl ergeben.

$\textcolor{red}{HERONVERFAHREN~NICHT~ANWENDEN}$: $\sqrt[]{4} = 2~$, $\sqrt[]{16} = 4~$, $\sqrt[]{25} = 5~$...

$\textcolor{green}{HERONVERFAHREN~ANWENDEN}$: $\sqrt[]{2} \approx 1,41~$,$\sqrt[]{12} \approx 3,46~$,$\sqrt[]{30} \approx 5,48~$...

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Das Heronverfahren wird auch babylonisches Wurzelziehen genannt.

Du solltest zunächst lernen, wie du das Heronverfahren anwendest. Der mathematische Hintergrund ist sehr komplex, weshalb es ratsam ist, das Vorgehen möglichst exakt einzuüben.

Anwendung des Heronverfahrens

Beispielaufgabe:  $\sqrt[]{2} =$?

1. Schritt: Ergebnisbereich abschätzen

Bevor wir das Heronverfahren anwenden können, müssen wir zunächst abschätzen in welchem Bereich die gesuchte Quadratwurzel liegen wird. Dazu nimmt man die nächst kleinere bzw. größere Quadratwurzel, die eine glatte Zahl ergibt. In unserem Beispiel bedeutet das:

$\sqrt[]{1} < \sqrt[]{2} < \sqrt[]{4}$

Daraus ergibt sich: $1 < \sqrt[]{2} < 2$

Unser Ergebnisbereich $[\textcolor{blue}{a}; \textcolor{red}{b}]$ ist also $[\textcolor{blue}{1}; \textcolor{red}{2}]$.

Die Wurzel aus zwei liegt also irgendwo zwischen $1$ und $2$. Wo genau können wir noch nicht sagen. Um diesen Wert genauer zu bestimmen, nutzen wir das Heronverfahren.

2. Schritt: Tabelle aufstellen

Das Heronverfahren besteht aus einer Tabelle, die wie folgt aussieht:

$\textcolor{black}{a~~~~~~~~~\frac{b}{a}~~~~~...\sqrt[]{2}...~~~~~\frac{a + b}{2}}$

Setzen wir für die Werte $a$ und $b$ nun unseren Ergebnisbereich von $1$ und $2$ ein, erhalten wir die erste Zeile der Tabelle:

$\textcolor{black}{a~~~~~~~~~~~~~~~~~~~~~\frac{b}{a}~~~~~~~~...\sqrt[]{2}...~~~~~~~~\frac{a + b}{2}}$

$\textcolor{green}{a_0 = 1~~~~~~~~~~~~\frac{2}{1}~~~~~~~1}$

Die erste Zeile gibt uns zunächst nur die Informationen, die wir schon hatten. In der dritten Spalte tragen wir den Ergebnisbereiche ein, der sich aus den ersten beiden Spalten ergibt. In der vierten Spalte berechnen wir den Mittelwert der beiden Werte $a$ und $b$. Dieser Wert ist deshalb wichtig, da man ihn in der nächsten Zeile als den "neuen" $a$ wert einsetzt.

$\textcolor{black}{a~~~~~~~~~~~~~~~~~~~~~\frac{b}{a}~~~~~~~~~~~~~~~~~~~~~~~...\sqrt[]{2}...~~~~~~~~~~~~~~~~~\frac{a + b}{2}}$

$\textcolor{green}{a_0 = 1~~~~~~~~~~~~\frac{2}{1}=2~~~~~~~~~~~~~~1}$

$\textcolor{blue}{a_1 = 1,5~~~~~~~\frac{2}{1,5}=1,\overline{3} ~~~~~~~1,\overline{3}}$

Wir erhalten in jeder Zeile zwei neue Werte $a$ und $b$, die den Bereich für $\sqrt[]{2}$ verkleinern. Dabei muss $a$ nicht immer der kleinere Wert sein. Je nachdem ob $a$ oder $b$ der kleinere Wert ist, schreiben wir in der dritten Spalte entweder $a

$\textcolor{black}{a~~~~~~~~~~~~~~~~~~~~~~~~~~~\frac{b}{a}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...\sqrt[]{2}...~~~~~~~~~~~~~~~~~~~~~~~\frac{a + b}{2}}$

$\textcolor{green}{a_0 = 1~~~~~~~~~~~~~~~~~~\frac{2}{1}=2~~~~~~~~~~~~~~~~~~~~~~1}$

$\textcolor{blue}{a_1 = 1,5~~~~~~~~~~~~~\frac{2}{1,5}=1,\overline{3} ~~~~~~~~~~~~~~~1,\overline{3}}$

$\textcolor{orange}{a_2 = 1,416~~~~~~~\frac{2}{1,416}=1,411 ~~~~~~~1,411}$

Theoretisch könnten wir dieses Verfahren noch unendlich oft wiederholen. Allerdings ändern sich die beiden Näherungswerte $a$ und $b$ kaum noch.

3. Schritt: Näherungswert angeben

In unserem Beispiel können wir nach der dritten Zeile eine ungefähre Näherung von $\sqrt[]{2} \approx 1,41$ angeben. Dies stimmt auch mit dem Ergebnis des Taschenrechners überein.

Es gibt mehrere Varianten des Heronverfahrens. Diejenige, die wir hier besprochen haben, ist die einfachste, führt aber genauso zum Ziel.

Teste dein neu erlerntes Wissen in unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Schulungs zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
more information best-cooler.reviews

diploms-home.com

www.best-cooler.reviews/best-lunch-cooler-personal/