Online Lernen | Mathematik Aufgaben | Wahrscheinlichkeitsrechnung und Statistik Kombinatorik Kombination ohne Wiederholung - Übungen und Beispiele

Kombination ohne Wiederholung - Übungen und Beispiele

In diesem Lerntext beschäftigen wir uns mit der Kombination. Die Kombination kommt aus dem Bereich der Kombinatorik und tritt in zwei Varianten auf: mit und ohne Wiederholung. In diesem Text geht es um die Kombination ohne Wiederholung

Was bedeutet Kombination?

Die Kombination gibt die Anzahl der Möglichkeiten an, eine bestimmte Menge an Objekten aus einer größeren Gesamtmenge auszuwählen. 

Beispiel

Beispiel

Hier klicken zum Ausklappen

Die Kombination hilft beim Lösen des folgenden Problems:

Aus einer Schülergruppe von insgesamt 30 Schülern, sollen vier Personen ausgewählt werden. Wie viele mögliche 4er-Gruppen können ausgewählt werden?

Die Kombination beachtet also nur die verschiedenen Auswahlmöglichkeiten für vier Schüler aus einer Gruppe von 30 Personen. Sie beachtet nicht etwa die Reihenfolge, in der man die ausgewählten Schüler ordnen könnte. 

Um die Kombination zu berechnen, benötigen wir zwei Größen: Die Gesamtanzahl $n$ der Objekte und die Anzahl $k$ der Objekte, die ausgewählt wurden.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Die Kombination steht in einem Zusammenhang zur Variation. Die Variation beachtet, genau so wie die Kombination, die verschiedenen Auswahlmöglichkeiten. Darüber hinaus beachtet die Variation aber auch die verschiedenen Reihenfolgen, in der man die ausgewähten Objekte ordnen könnte. Dies beachtet die Kombination nicht

Kombination ohne Wiederholung

Wie schon bei der Variation bedeutet eine Kombination ohne Wiederholung, dass jedes der Objekte nur einmal ausgewählt werden darf. 

Zur Berechnung der Kombination benötigen wir nicht etwa die Fakultät, sondern lösen den Term als Binomialkoeffizient. 

Merke

Merke

Hier klicken zum Ausklappen

Kombination ohne Wiederholung

Um zu berechnen, wie viele Möglichkeiten es gibt, $k$ Objekte aus einer Gesamtmenge von $n$ Objekten auszuwählen, rechnet man:

$\Large{\binom{n}{k}}$

gesprochen: "n über k"  oder  "k aus n"

Methode

Methode

Hier klicken zum Ausklappen

Wie rechnet man Binomialkoeffizienten mit dem Taschenrechner aus?

Beispiel: $\Large{\binom{5}{3}~=~10}$

Um solche Terme zu berechnen, benötigst du die nCr - Taste. Um den Beispielterm auszurechnen, gibst du Folgendes in den Taschenrechner ein:

Eingabe: $~~5~~$ [nCr] $~~3~~$ [=]

Beispielaufgaben

Beispiel

Beispiel

Hier klicken zum Ausklappen

Aus einer Schülergruppe von insgesamt 30 Schüler und Schülerinnen, sollen vier Personen ausgewählt werden. Wie viele mögliche 4er-Gruppen können ausgewählt werden?

Anzahl der ausgewählten Objekte $k~=~4$

Anzahl der Gesamtmenge an Objekten $n~=~30$

Berechnung der Kombination: $\Large{\binom{n}{k}~=~ \binom{30}{4}}~=~27.405$

Man kann 27.405 mögliche 4er-Gruppen aus der Schülergruppe auswählen. 

Beispiel

Beispiel

Hier klicken zum Ausklappen

Beim Lotto werden sechs Zahlen aus insgesamt $49$ gewählt. Wie viele Möglichkeiten gibt es?

Anzahl der ausgewählten Objekte $k~=~6$

Anzahl der Gesamtmenge an Objekten $n~=~49$

Berechnung der Kombination: $\Large{\binom{n}{k}~=~ \binom{49}{6}}~=~13.983.816$

Es existieren 13.983.816 (fast 14 Millionen) Auswahlmöglichkeiten. 

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Schulungs zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
steroid-pharm.com

www.steroid-pharm.com

Продать рапс в Херсонской области