Online Lernen | Mathematik Aufgaben | Geometrie Berechnungen am Kreis Kreis - So berechnest du Flächeninhalt und Umfang!

Kreis - So berechnest du Flächeninhalt und Umfang!

Was ist ein Kreis?

Was ist eigentlich ein Kreis? Per Definition ist es eine geometrische Figur, bei der alle Punkte den gleichen Abstand zum Mittelpunkt haben.

Ihr wisst sicher alle, wie ein Kreis aussieht. Anhand der nachfolgenden Abbildungen schauen wir uns den Kreis nochmal genauer an.

kreis-1
Abbildung Kreis mit Mittelpunkt

Der Mittelpunkt ist, wie der Name schon sagt, genau in der Mitte des Kreises. Der Abstand zwischen einem Punkt des Kreisrandes und dem Mittelpunkt wird als Radius bezeichnet.

Radius

Wenn du mit dem Zirkel einen Kreis zeichnest, stellst du als erstes einen bestimmten Radius ein. Die Spitze des Zirkels ergibt den Mittelpunkt während du mit der anderen Seite den Kreisrand bzw. die Kreislinie zeichnest. Die Größe dazwischen ist der Radius.

kreis-2
Abbdildung Radius - vom Mittelpunkt zum Rand

Der Radius wird vom Mittelpunkt zum Rand gemessen. Der Abstand zwischen dem Mittelpunkt und Kreisrand ist also überall gleich groß, wie es auch schon in der Definition des Kreises beschrieben wurde.

Merke

Merke

Hier klicken zum Ausklappen

Der Radius ist Strecke zwischen dem Mittelpunkt und dem Kreisrand eines Kreises.

Durchmesser

druchmesser
Abbildung Durchmesser

Der Durchmesser läuft von einem Punkt auf dem Rand zu dem Punkt auf der gegenüberliegenden Seite. Dabei ist es wichtig, dass die Gerade durch den Mittelpunkt läuft.

Wie dir wahrscheinlich auffällt, ist der Durchmesser doppelt so groß wie der Radius. Es gilt also:
$d=2\cdot r$ oder auch $r=0,5\cdot d$
Mit diesen Formeln kannst du jeweils den Durchmesser in den Radius umrechnen oder umgekehrt.

Merke

Merke

Hier klicken zum Ausklappen

Der Durchmesser ist die Strecke zwischen zwei Randpunkten, die durch den Mittelpunkt geht.

Für das Verhältnis zwischen Durchmesser und Radius gilt folgender Zusammenhang: $d=2\cdot r$

Formeln zur Berechnung von Fläche und Umfang

Fläche

Die Fläche oder der Flächeninhalt von zweidimensionalen Figuren wird in $m^2$ (Quadratmetern) angegeben. Im Gegensatz zu den rechteckigen Figuren, wie zum Beispiel dem Parallelogramm, können wir den Flächeninhalt des Kreises nicht einfach berechnen, indem wir die Breite mit der Höhe multiplizieren. Der Kreis hat keine Ecken oder Kanten, auf die sich diese Formel anwenden lassen könnte. Stattdessen müssen wir auf die Eigenschaften zurückgreifen, die uns der Kreis bietet: den Radius. Eine Kreisfläche berechnet sich wie folgt:

Merke

Merke

Hier klicken zum Ausklappen

Berechnung der Kreisfläche

$A=\pi \cdot r^2$
$A=\frac{\pi \cdot d^2}{4}$

Dabei ist:
A = Flächeninhalt
$\pi =$ Kreiszahl $\approx 3,14$
$r$ = Radius
$d$ = Durchmesser

Beispiel

Beispiel

Hier klicken zum Ausklappen

Ein Kreis hat einen Durchmesser von $10 dm$. Wie groß ist seine Fläche?

Wenn der Kreis einen Durchmesser von $10 dm$ hat, dann beträgt der Radius $5 dm$. Setzen wir dies in die obere Formel ein.

$A=\pi \cdot r^2$
$A=\pi \cdot 5dm^2$
$A=\pi \cdot 25dm^2$
$A=\pi \cdot 25\approx 78,54dm^2$

Natürlich hätten wir auch direkt mit dem Durchmesser rechnen können.
$A=\frac{\pi \cdot d^2}{4}$
$A=\frac{\pi \cdot 10dm^2}{4}$
$A=\frac{\pi \cdot 100dm^2}{4}\approx 78,54dm^2$

Umfang

Der Umfang ist der Weg, den man zurücklegen muss, um einmal um einen geometrischen Körper herumzugehen. Er hat die Einheit m (Meter) und errechnet sich für den Kreis mithilfe des Radius und der Kreiszahl $\pi$.

Merke

Merke

Hier klicken zum Ausklappen

Berechnung des Kreisumfangs

$U=\pi \cdot d$
$U=2\cdot \pi \cdot r$

Dabei ist:
U = Umfang
$\pi =$ Kreiszahl $\approx 3,14$
$r$ = Radius
$d$ = Durchmesser

Beispiel

Beispiel

Hier klicken zum Ausklappen

Ein Kreis hat einen Durchmesser von $10 dm$. Wie groß ist sein Umfang?

Setzen wir den Wert einfach in die obere Formel ein.
$U=\pi \cdot d$
$U=\pi \cdot 10dm$
$U=\pi \cdot 10dm\approx 31,42dm$

 Nun kannst du dein neu erlerntes Wissen mit unseren Übungsaufgaben testen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Schulungs zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
http://tokyozakka.com.ua

Узнайте про популярный веб сайт , он рассказывает про врач отоларинголог www.vy-doctor.com.ua
best hentai game