Online Lernen | Mathematik Aufgaben | Terme und Gleichungen Lineare Gleichungssysteme Lineare Gleichungssysteme einfach erklärt

Lineare Gleichungssysteme einfach erklärt

Auf dieser Lernseite beschäftigen wir uns damit, was ein lineares Gleichungssystem ist und worin es sich von einer linearen Gleichung unterscheidet.

Lineare Gleichungen

Lineare Gleichungen sind dir wahrscheinlich schon unter dem Begriff der Gleichung, also ohne das Merkmal linear, bekannt. Die Bedeutung ist jedoch dieselbe. Lineare Gleichungen bestehen meist aus ganzen Zahlen und beinhalten eine Variable, das heißt eine Zahl, deren Wert unbekannt ist. Ziel ist es eben diesen Wert herauszufinden. Mit Hilfe von Ausklammern und Äquivalenzumformungen lassen sich solche Gleichungen lösen. Hier einige Beispiele für lineare Gleichungen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x + 5 = 9$

$3 \cdot x = 21$

$\frac{x}{4} = 5$

Von der Gleichung zum Gleichungssystem

Wie kommen wir nun von einer linearen Gleichung  zu einem Gleichungssystem? Lineare Gleichungssysteme besitzen bestimmte Eigenschaften, die normale Gleichungen nicht haben. So bestehen lineare Gleichungssysteme aus mindestens zwei linearen Gleichungen und dementsprechend auch aus mindestens zwei unbekannten Variablen.

Merke

Merke

Hier klicken zum Ausklappen

Lineare Gleichungssysteme bestehen aus mindestens zwei linearen Gleichungen.

Gleichungssystem bedeutet, dass die Gleichungen zusammen gehören - sie müssen gleichzeitig erfüllt sein. Das heißt, dass der Wert einer Variable für beide Gleichungen gelten muss. Schauen wir uns dazu ein Beispiel an.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Du möchtest einkaufen gehen, weißt allerdings nicht mehr wie teuer eine Banane und wie teuer eine Tüte Milch sind. Du kannst dich nur noch an deine letzten Einkäufe erinnern und weißt, dass 5 Bananen und 6 Tüten Milch 11€ gekostet haben und, dass 2 Bananen und 2 Tüten Milch zusammen 6€ gekostet haben. 

Aus diesen Informationen kannst du errechnen, wie viel eine Tüte Milch und eine Banane einzeln kosten. Mathematisch gesehen haben wir zwei Unbekannte (den Einzelpreis der Banane und der Milch) und, auf Grund der zwei Informationen über deine letzten Einkäufe, auch zwei Gleichungen:

5 Bananen + 6 Milchtüten = 11€

$~~~5 \cdot x~~~~~~+~~~6 \cdot y~~~~~~~= 11$

2 Bananen + 2 Milchtüten = 6€

$~~~2 \cdot x~~~~~~+~~~2 \cdot y~~~~~~~= 6$

Die beiden Gleichungen, die wir aus der Aufgabe formuliert haben, hängen zusammen. Das $x$ der ersten Gleichung muss in der zweiten Gleichung denselben Wert haben. Dasselbe gilt für die zweite Variable, das $Y$. In einem Gleichungssystem schreibt man die beiden Terme folgendermaßen auf:

$|5 \cdot x + 6 \cdot y = 11|$

$|2 \cdot x + 2 \cdot y = 6|$

Die beiden Gleichungen werden untereinander geschrieben und von vertikalen Strichen eingerahmt. Um dieses Gleichungssystem zu lösen, gibt es unterschiedliche Methoden, die du dir auf unseren anderen Lernseiten anschauen kannst.

Sonderfälle von Gleichungssystemen

Man unterscheidet zwei besondere Fälle von Gleichungssystemen. Zum einen kann ein Gleichungssystem überbestimmt sein. In diesem Fall erhältst du aus der Aufgabe mehr Gleichungen als Variablen. Das ist an sich nicht schlimm und könnte dein Rechnen sogar vereinfachen. Oft widersprechen sich die Gleichungen aber. In diesem Fall gibt es keine Lösung für das Gleichungssystem.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$|2 \cdot a + b = 10|$

$|2\cdot a =0|$

$|a - b = 0|$

Die zweite Gleichung legt fest, dass $a$ den Wert $0$ haben muss. Ist dies der Fall, können die erste und dritte Gleichung nicht gleichzeitig erfüllt sein.

Es kann auch der gegenteilige Fall eintreten: du erhältst aus der Aufgabe mehr Variablen als Gleichungen. Das Gleichungssystem gilt als unterbestimmt. Höchstwahrscheinlich bekommst du dann nur einen Wertebereich anstatt einen exakten Wert geliefert.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$a + b + c = 9$

$a + b= 6$

Teste dein neu erlerntes Wissen nun mit unseren Übungsaufgaben. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Schulungs zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
best-cooler.reviews

here best-cooler.reviews

www.diploms-home.com