Online Lernen | Mathematik Aufgaben | Terme und Gleichungen Quadratische Gleichungen lösen p-q-Formel - Übungen mit Lösungen

p-q-Formel - Übungen mit Lösungen

Merke

Merke

Hier klicken zum Ausklappen

p-q Formel:

Für eine Gleichung der Form $x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$ gilt:

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

Die p-q-Formel ist eine Möglichkeit eine quadratische Gleichung in wenigen Schritten nach der Unbekannten $x$ umzustellen und somit zu lösen. Quadratische Gleichungen besitzen die allgemeine Form

$a \cdot x^2 + b \cdot x + c = 0$.

Dabei gilt, dass $a \neq 0$ ist.

Die unbekannte Zahl $x$ taucht gleich zweimal in der Gleichung auf. Einmal in einfacher Form und einmal mit zwei potenziert. Die Koeffizienten a, b und c stehen für Zahlen.

Normalform einer quadratischen Gleichung

Um die p-q-Formel anwenden zu können, muss die quadratische Gleichung in ihrer Normalform vorliegen. Die Normalform ist definiert durch $a = 1$.

$1 \cdot x^2 + b \cdot x + c = 0$       $x^2 + b \cdot x + c = 0$

Um die p-q-Formel anwenden zu können, darf also kein Faktor vor dem $x^2$ stehen. Da dies in den meisten Aufgaben nicht gegeben ist, musst du die quadratische Gleichung meist erst in ihre Normalform umwandeln. Dies geht ganz einfach, indem du durch den Faktor vor dem $x^2$ teilst:

$\textcolor{blue}{a} \cdot x^2 + b \cdot x + c = 0$   | : a

$ x^2 + \frac{b}{\textcolor{blue}{a}} \cdot x + \frac{c}{\textcolor{blue}{a}} = 0$

Die beiden Brüche werden durch die Variablen $p$ und $q$ ersetzt:

$\frac{b}{\textcolor{blue}{a}} = \textcolor{red}{p}$

$\frac{c}{\textcolor{blue}{a}} = \textcolor{orange}{q}$

Daraus ergibt sich die Normalform:

$x^2 +  \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$

Merke

Merke

Hier klicken zum Ausklappen

Normalform der quadratischen Gleichung:

$x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$

Herleitung der p-q-Formel

Um von der Normalform auf die p-q-Formel zu kommen, wird die quadratische Gleichung mit Hilfe von Äquivalenzumformungen, der quadratischen Ergänzung und der binomischen Formeln nach $x$ umgestellt.

$x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0  | -\textcolor{orange}{q}$

$x^2 + \textcolor{red}{p} \cdot x = - \textcolor{orange}{q}$ | $+ (\frac{ \textcolor{red}{p}}{2})^2 $ (quadratische Ergänzung)

$x^2 + \textcolor{red}{p} \cdot x + (\frac{ \textcolor{red}{p}}{2})^2 = (\frac{ \textcolor{red}{p}}{2})^2 - \textcolor{orange}{q}$

Um mit dem Term weiterzurechnen, müssen wir die linke Seite so umschreiben, dass wir dort die 1. binomische Formel anwenden können.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Die erste binomische Formel lautet:

$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$

$x^2 + \textcolor{red}{p} \cdot x + (\frac{ \textcolor{red}{p}}{2})^2 = (\frac{ \textcolor{red}{p}}{2})^2 - \textcolor{orange}{q}$ | Umformung

$x^2 + 2\cdot (\frac{\textcolor{red}{p}}{2}) \cdot x + (\frac{ \textcolor{red}{p}}{2})^2 = (\frac{ \textcolor{red}{p}}{2})^2 - \textcolor{orange}{q}$ | Anwendung der ersten binomischen Formel

$ (x + \frac{\textcolor{red}{p}}{2})^2 = (\frac{\textcolor{red}{p}}{2})^2 - \textcolor{orange}{q} | \pm \sqrt{}$

$x + \frac{\textcolor{red}{p}}{2} = \pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2 - \textcolor{orange}{q}} | -\frac{\textcolor{red}{p}}{2}$

$x = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

Merke

Merke

Hier klicken zum Ausklappen

p-q Formel:

Für eine Gleichung der Form $x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$ gilt:

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

Der Term unter der Wurzel kann entweder addiert oder subtrahiert werden. Eine quadratische Gleichung hat bis zu zwei Lösungen.

Übung mit Lösung

Betrachten wir folgende quadratische Gleichung:

$3 \cdot x^2 - 6\cdot x - 24 = 0$

Die Gleichung liegt nicht in der Normalform vor. Wir müssen also zunächst durch den Faktor, der vor dem $x^2$ steht, teilen.

$3 \cdot x^2 - 6\cdot x - 24 = 0$   | $:3$

$x^2 - 2\cdot x - 8 = 0$

Die quadratische Gleichung liegt nun in der Normalform vor und wir können die p-q-Formel anwenden.

$x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$ $~~~~~~~~~~~~~~~~\rightarrow$   $x^2 \textcolor{red}{-2}\cdot x \textcolor{orange}{-8} = 0$

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$  $~~~~~~~~\rightarrow$  $x_{1/2} = -\frac{\textcolor{red}{-2}}{2}\pm \sqrt{(\frac{\textcolor{red}{-2}}{2})^2-\textcolor{orange}{-8}}$

Wir erhalten für $x$ folgende Werte:

$x_1 = - 2~~~~~~~~~x_2 = 4$

Mögliche Lösungen der p-q-Formel

Eine quadratische Gleichung kann unterschiedlich viele Lösungen haben. Man unterscheidet zwischen:

  • zwei reellen Lösungen
  • einer reellen Lösung
  • keiner Lösung

Wie viele Lösungen die quadratische Gleichung hat, hängt von dem Term unterhalb der Wurzel in der p-q-Formel ab.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Der Term, der bei der p-q-Formel unterhalb der Wurzel steht, wird Diskriminante ($D$) genannt.

1. Die Diskriminante ist größer als null ($D~>~0$)

Ist die Diskriminante größer als null, ergibt die p-q-Formel zwei reelle Zahlen als Lösung.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x^2 - 4\cdot x + 3 = 0$

$x_{1/2} = -(\frac{-4}{2})\pm \sqrt{(\frac{-4}{2})^2-3}$

$x_1 = 1 ~~~ x_2 = 3$

2. Die Diskriminante ist gleich null ($D = 0$)

Wenn die Diskriminante null ist, erhalten wir nur eine reelle Lösung.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x^2 - 8\cdot x + 16$

$x_{1/2} = -(\frac{-8}{2})\pm \sqrt{(\frac{-8}{2})^2-16}$

$x = 4$

3. Die Diskriminante ist kleiner als null ($D~

Wenn die Diskriminante kleiner als null ist, ist der Wert unterhalb der Wurzel eine negative Zahl. Die Wurzel von negativen Zahlen zu errechnen ist mathematisch jedoch nicht möglich. Die quadratische Gleichung besitzt dann keine reelle Lösung.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x^2 - 4\cdot x + 10 = 0$

$x_{1/2} = - \frac{-4}{2}\pm\sqrt{(\frac{-4}{2})^2-10}$

$x_{1/2} = 2 \pm \sqrt{-6}$

$x_{1/2} =$ keine reelle Lösung

Merke

Merke

Hier klicken zum Ausklappen

Die p-q-Formel kann insgesamt drei Arten von Lösungen ergeben:

  • zwei reelle Lösungen ($D>0$)
  • eine reelle Lösung ($D=0$)
  • keine reelle Lösung ($D

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Schulungs zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
best-cooler.reviews/best-insulated-cooler-high-end-rotomolded/

http://best-products.reviews

www.diploms-home.com/poleznoe-diplom-vuza.html