Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Potenzen und Potenzgesetze Übersicht zu allen Potenzgesetzen

Übersicht zu allen Potenzgesetzen

Du suchst zum Thema Potenzgesetzte eine Übersicht? Dann bist du auf dieser Lernseite genau richtig. Wir erklären dir detailliert das Rechnen mit Potenzen mit den gleichen Exponenten oder den gleichen Basen. Du findest hier zu den Potenzgesetzten Aufgaben mit Lösungen und außerdem bist du nach dieser Lernseite und unserem Video fit im Thema Potenzen. Los gehts!

Potenzen - Eine Übersicht

Potenzen sind nicht nur eine alternative Schreibweise für eine längere Multiplikation, sondern können auch miteinander multipliziert und dividiert werden. Um mit Potenzen zu rechnen, musst du sie nicht jedes Mal ausschreiben. Allerdings musst du eine kleine Anzahl neuer Rechengesetze beachten, die aber - wie du später merken wirst - nicht wirklich kompliziert sind.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Weißt du schon was die Begriffe Exponenten und Basis sind? Oder bist du dir vielleicht noch unsicher mit den beiden Begriffen? In unserem Lernext Potenzen - Definition und Beispiele kannst du nochmal alles über wichtige Begriffe zum Thema Potenz nachlesen.

Das Rechnen mit Potenzen funktioniert nicht immer. Voraussetzung ist, dass entweder die Basen oder die Exponenten der Potenzen gleich sind. Sollte dies nicht der Fall sein, kannst du keine Berechnungen durchführen.

Wir stellen dir jetzt die verschiedenen Potenzgesetze vor. Wir haben sie aufgeteilt, indem wir sie entweder der Oberkategorie Potenzen mit der gleichen Basis oder der Oberkategorie Potenzen mit dem gleichen Exponenten zugeordnet haben. Sieh selbst:

Potenzen mit der gleichen Basis

Zunächst schauen wir uns zwei Gesetze an, die gelten, wenn wir Potenzen mit der gleichen Basis multiplizieren oder dividieren möchten. Also zum Beispiel $\textcolor{black}{3^8 \cdot 3^2}$ oder $\textcolor{black}{\frac{3^2}{3^5}}$.

Merke

Merke

Hier klicken zum Ausklappen

$(1)$ Potenzen mit gleichen Basen werden $\textcolor{black}{multipliziert}$, indem man die Exponenten addiert und die Basis beibehält.

$\textcolor{black}{ a^m \cdot a^n = a^{m+n}}$                                                                                                      

$ \textcolor{black}{2^3 \cdot 2^7 = 2^{10}}$

 

$(2)$ Potenzen mit gleichen Basen werden $\textcolor{black}{dividiert}$, indem man die Exponenten subtrahiert und die Basis beibehält.              

$\textcolor{black}{\frac{a^m}{a^n} = a^{m-n}}$                                                                                                    

$\textcolor{black}{\frac{5^6}{5^2} = 5^{4}}$

 

 Potenzen mit dem gleichen Exponenten

Nun schauen wir uns zwei Gesetze an, die gelten, wenn wir Potenzen mit dem gleichen Exponenten multiplizieren oder dividieren möchten. Also zum Beispiel $\textcolor{black}{3^8 \cdot 2^8}$ oder $\textcolor{black}{\frac{3^7}{4^7}}$.

Merke

Merke

Hier klicken zum Ausklappen

 $(1)$Potenzen mit gleichen Exponenten werden $\textcolor{black}{multipliziert}$, indem man die Basen multipliziert und den Exponenten beibehält.

$\textcolor{black}{a^m\cdot b^m = (a\cdot b)^m}$                                                       

$\textcolor{black}{5^3\cdot 6^3 = 30^3}$

 

$(2)$Potenzen mit gleichen Exponenten werden $\textcolor{black}{dividiert}$, indem man ihre Basen dividiert und den Exponenten beibehält.

$\textcolor{black}{\frac{a^m}{b^m} = (\frac{a}{b})^m} $                                                

$\textcolor{black}{\frac{9^8}{3^8} = 3^8 }$

Potenzen potenzieren

Eine Potenz kann auch potenziert werden. Wie du dabei vorgehst, zeigen wir dir jetzt. Beim Potenzieren einer Potenz setzt du eine Potenz hoch einem Exponenten, wie zum Beispiel $\textcolor{black}{(5^2)^3}$

Merke

Merke

Hier klicken zum Ausklappen

Eine Potenz wird $\textcolor{black}{potenziert}$, indem man die Exponenten multipliziert und die Basis beibehält.                                                         

$\textcolor{black}{(a^m)^n = a^{m\cdot n}}$                                                                                                       

$\textcolor{black}{(7^3)^4 = 7^{12}}$

Nun hast du eine detaillierte Übersicht über die Potenzgesetze bekommen. Zur Vertiefung dieses Wissens, teste dich in unseren Übungen. Dabei wünschen wir dir viel Spaß und Erfolg!

 

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Schulungs zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
www.best-cooler.reviews

читайте здесь a-diplomus.com

best-cooler.reviews/best-thermoelectric-cooler-reviews/