Online Lernen | Mathematik Aufgaben | Geometrie Geometrische Körper Pyramide: Oberfläche und Volumen berechnen

Pyramide: Oberfläche und Volumen berechnen

Die Pyramide ist ein geometrischer Körper, der aus einem Vieleck als Grundfläche, mindestens 3 gleichschenkligen Dreiecken als Mantelfläche und einer Spitze besteht. Die Mantelfläche einer Pyramide besitzt genauso viele Dreiecke, wie die Grundfläche Seiten hat. Die regelmäßige Form einer Pyramide besteht aus einem Quadrat als Grundfläche und entsprechend vier kongruenten gleichschenkligen Dreiecken. Wichtige Größen der Pyramide sind die Seitenlänge $a$ der Grundfläche, die Höhe $h_{Py}$ der Pyramide und die Höhe $h_{Dreieck}$ der Dreiecke. Die Höhe der Pyramide reicht vom Mittelpunkt der Grundfläche, d.h. dem Schnittpunkt der Diagonalen, bis zur Spitze.

Aufbau der Pyramide
Aufbau der Pyramide

Darüber hinaus gibt es weitere Arten von Pyramiden, die alle unterschiedliche Grundflächen besitzen. Eine Pyramide mit einem Dreieck als Grundfläche nennt man dreiseitige Pyramide, weil ihre Mantelfläche jeweils drei Seiten hat. Analog dazu nennt man Pyramiden mit einem Fünfeck als Grundfläche fünfseitige Pyramiden und solche mit einem Sechseck als Grundfläche sechsseitige Pyramiden.

Die Berechnungen an der Pyramide werden im Folgenden beispielhaft anhand einer vierseitigen Pyramide erklärt.

Grundfläche einer Pyramide

Die Grundfläche einer vierseitigen Pyramide errechnet sich wie der Flächeninhalt eines Quadrats: Länge mal Breite.

Merke

Merke

Hier klicken zum Ausklappen

Berechnung der Grundfläche einer vierseitigen Pyramide mit der Seitenlänge $a$ 

$A_{Grundfläche} = a \cdot a = a^2$

Mantelfläche einer Pyramide

Die Mantelfläche einer vierseitigen Pyramide besteht aus vier gleichschenkligen Dreiecken. Gleichschenklige Dreiecke sind Dreiecke mit zwei gleichlangen Seiten. Der Flächeninhalt gleichschenkliger Dreiecke errechnet sich wie folgt:

$A_{Dreieck} = \frac{1}{2} \cdot Grundseite \cdot Höhe = \frac{1}{2} \cdot a \cdot h_{Dreieck}$

Da die Mantelfläche aus insgesamt vier Dreiecken besteht, müssen wir den errechneten Flächeninhalt noch mit $4$ multiplizieren.

Merke

Merke

Hier klicken zum Ausklappen

Berechnung der Mantelfläche 

$A_{Mantel} = 4 \cdot (\frac{1}{2} \cdot a \cdot h_{Dreieck})$

Oberfläche einer Pyramide

Die Oberfläche einer Pyramide ist die Summe aus Grund- und Mantelfläche.

Merke

Merke

Hier klicken zum Ausklappen

Berechnung der Oberfläche

$O_{Pyramide} =~Grundfläche~+~Mantelfläche~= a^2 +  4 \cdot (\frac{1}{2} \cdot a \cdot h_{Dreieck})$

Volumen einer Pyramide

Die Formel zur Volumenberechnung für eine vierseitige Pyramide muss zunächst hergeleitet werden: In einen Würfel der Kantenlänge $a$ passen insgesamt sechs regelmäßige vierseitige Pyramiden, deren Seitenlänge ebenfalls $a$ beträgt. 

Pyramiden in einem Würfel.
Pyramiden in einem Würfel.

$6 \cdot V_{Pyramide} = V_{Würfel}$

Halbiert man den Würfel, erhält man ein Quader mit den Seitenlängen $a$ und der Höhe $h_{Pyramide}$. In diesen halbierten Würfel passen nur noch drei der Pyramiden.

Pyramiden im Quader.
Pyramiden im Quader.

$3 \cdot V_{Pyramide} = \frac{1}{2} \cdot V_{Würfel} = V_{Quader}$

Das Volumen des Quaders können wir mit bekannten Größen ausdrücken:

$V_{Quader} = Länge~\cdot~Breite~\cdot~Höhe = a \cdot a \cdot h_{Pyramide}$

$3 \cdot V_{Pyramide} = a \cdot a \cdot h_{Pyramide}$

Die Gleichung lässt sich nach dem Volumen der Pyramide umstellen, indem wir durch $3$ teilen.

$V_{Pyramide} =  \frac{1}{3} \cdot a \cdot a \cdot h_{Pyramide} = \frac{1}{3} \cdot a^2 \cdot h_{Pyramide}$

Merke

Merke

Hier klicken zum Ausklappen

Volumen einer Pyramide

$V_{Pyramide} = \frac{1}{3} \cdot~Grundseite~ \cdot ~Höhe~$

$V_{Pyramide} = \frac{1}{3} \cdot a^2 \cdot h_{Pyramide}$

Teste dein neu erlerntes Wissen nun mit unseren Übungsaufgaben. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Schulungs zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
Был найден мной интересный портал на тематику инсталляция для унитаза http://budmagazin.com.ua
http://agroxy.com

Продать ячмень в Запорожской области