Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Wurzelrechnung Wurzeln multiplizieren und dividieren

Wurzeln multiplizieren und dividieren

Ähnlich wie Potenzen können auch Wurzeln multipliziert oder dividiert werden. Dazu musst du nur einige wenige Regeln beachten.

Beim Multiplizieren und Dividieren müssen wir zwei Typen von Wurzeln unterscheiden:

  • gleichnamige Wurzeln und
  • ungleichnamige Wurzeln.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Gleichnamige Wurzeln sind Wurzeln, deren Wurzelexponenten gleich sind.

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{n}]{b}$

Ungleichnamige Wurzeln sind Wurzeln, deren Wurzelexponenten nicht gleich sind.

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{m}]{b}$

Wenn du nur eine einzige Wurzel betrachtest, kannst du nicht sagen, ob sie gleichnamig oder ungleichnamig ist, weil du dafür immer eine zweite Wurzel benötigst. Die Radikanden spielen bei diesen Begriffen keine Rolle und können sowohl gleich als auch unterschiedlich sein.

Gleichnamige Wurzeln multiplizieren 

Das Multiplizieren gleichnamiger Wurzeln ist denkbar einfach. Du musst nur die Zahlen unterhalb der Wurzel miteinander multiplizieren und unter einer Wurzel zusammenfassen:

$\sqrt{\textcolor{blue}{50}} \cdot \sqrt{\textcolor{red}{2}} = \sqrt{\textcolor{blue}{50} \cdot \textcolor{red}{2}} = \sqrt{100}$

Wenn die Wurzeln Koeffizienten besitzen, musst du auch diese multiplizieren und vor die Wurzel schreiben.

$(\textcolor{blue}{3} \cdot \sqrt{\textcolor{blue}{50}}) \cdot (\textcolor{red}{5} \cdot \sqrt{\textcolor{red}{2}}) = \textcolor{blue}{3} \cdot \textcolor{red}{5} \cdot \sqrt{\textcolor{blue}{50} \cdot \textcolor{red}{2}} = 15 \cdot \sqrt{100}$

Merke

Merke

Hier klicken zum Ausklappen

Gleichnamige Wurzeln werden multipliziert, indem die Radikanden miteinander multipliziert werden und zusammen unter eine Wurzel geschrieben werden.

$\sqrt[n]{\textcolor{blue}{a}} \cdot \sqrt[n]{\textcolor{red}{b}} = \sqrt[n]{\textcolor{blue}{a} \cdot \textcolor{red}{b}}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\sqrt[3]{15} \cdot \sqrt[3]{9} = \sqrt[3]{15 \cdot 9} = \sqrt[3]{135}$

$\sqrt[5]{123} \cdot \sqrt[5]{12} = \sqrt[5]{123 \cdot 12} = \sqrt[5]{1476}$

$\sqrt{9} \cdot \sqrt{36} = \sqrt{9 \cdot 36} = \sqrt{324}$

Ungleichnamige Wurzeln multiplizieren

Ungleichnamige Wurzeln können zunächst nicht multipliziert werden. Um sie multiplizieren zu können, müssen sie gleichnamig gemacht werden, das heißt, sie müssen denselben Wurzelexponenten haben.

$\sqrt[\textcolor{red}{3}]{20} \cdot  \sqrt[\textcolor{red}{5}]{32}~~~~~NICHT~MOEGLICH$

Um aus ungleichnamigen Wurzeln gleichnamige zu machen, müssen wir den Wurzelexponenten erweitern.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Du weißt nicht genau, wie man Wurzelexponenten erweitert? Für dieses Thema bieten wir einen eigenständigen Lerntext an. Wenn du noch Probleme mit dieser Methode hast, schaue dort nach!

$(\sqrt[\textcolor{red}{3}]{20}) \cdot  (\sqrt[\textcolor{red}{5}]{32}) \rightarrow (\sqrt[\textcolor{red}{3} \cdot 5]{20^5}) \cdot  (\sqrt[\textcolor{red}{5} \cdot 3]{32^3}) = (\sqrt[\textcolor{red}{15}]{20^5}) \cdot  (\sqrt[\textcolor{red}{15}]{32^3}) = \sqrt[\textcolor{red}{15}]{(20^5) \cdot (32^3)}$

Merke

Merke

Hier klicken zum Ausklappen

Ungleichnamige Wurzeln werden multipliziert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Gleichnamige Wurzeln dividieren

Auch das Dividieren von gleichnamigen Wurzeln folgt einem einfachen Prinzip. Ähnlich wie bei der Multiplikation kannst du die beiden Radikanden durcheinander teilen und unter eine gemeinsame Wurzel schreiben.

$\frac{\sqrt{\textcolor{blue}{16}}}{\sqrt{\textcolor{red}{8}}} = \sqrt{\frac{\textcolor{blue}{16}}{\textcolor{red}{8}}} = \sqrt{2}$

Merke

Merke

Hier klicken zum Ausklappen

Gleichnamige Wurzeln werden dividiert, indem der Quotient aus den beiden Radikanden unter eine Wurzel geschrieben wird.

$\frac{\sqrt[n]{\textcolor{blue}{a}}}{\sqrt[n]{\textcolor{red}{b}}} = \sqrt[n]{\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\frac{\sqrt[3]{15}}{\sqrt[3]{3}} = \sqrt[3]{\frac{15}{3}} = \sqrt[3]{5}$

$\frac{\sqrt{44}}{\sqrt{11}} = \sqrt{\frac{44}{11}} = \sqrt{4}$

$\frac{\sqrt[5]{256}}{\sqrt[5]{4}} = \sqrt[5]{\frac{256}{4}} = \sqrt[5]{64}$

Ungleichnamige Wurzeln dividieren

Ungleiche Wurzeln können zunächst nicht dividiert werden. Genau wie beim Multiplizieren kannst du aber auch hier den Wurzelexponenten erweitern:

$\frac{\sqrt[2]{20}}{\sqrt[3]{9}} \rightarrow \frac{\sqrt[2 \cdot 3]{20^3}}{\sqrt[3 \cdot 2]{9^2}} = \frac{\sqrt[6]{8000}}{\sqrt[6]{81}} = \sqrt[6]{\frac{8000}{81}}$

Merke

Merke

Hier klicken zum Ausklappen

Ungleichnamige Wurzeln werden dividiert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Dein neu erlerntes Wissen kannst du nun mit unseren Übungsaufgaben testen! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Schulungs zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zw 14-21 Uhr.

Jetzt fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort

TESTE KOSTENLOS UNSER
SELBST-LERN-PORTAL:

  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
6601
https://velotime.com.ua

www.kls-agency.com.ua

Предлагаем вам со скидкой www.all-diplomz.com по вашему желанию, недорого.